

KANSAS STATE

Alternative Summer Annual Legumes

John Holman, Nicholas Detter,

Augustine Obour, & Lucas Haag

Southwest Research-Extension Center – Garden City

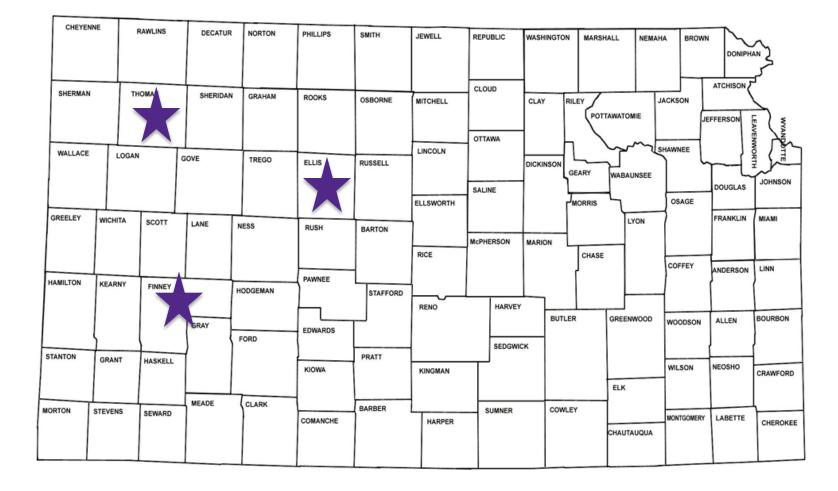
Background Information

- Growing demand for forage in the region
- Summer annual forage grasses common in the region (forage sorghum, sorghum-sudan, etc.)
- High yielding, but low protein
- Growing & lactating cattle require high quality forage
- Alfalfa requires irrigation (<24" rainfall)
- Limited knowledge about potential summer annual forage legume capabilities in the region

Objective

 Determine the yield potential, forage nutritive value, and water-use efficiency of six warm-season annual forage species (four legume species and two grass species)

Hypothesis #1


Grass species will produce more forage yield and better water productivity than legumes but have lower crude protein and higher fiber content than legumes

Hypothesis #2

Annual legume species performance will vary, and certain species will be identified as potential alternative crops for the semi-arid Great Plains

Materials and Methods

- Garden City
 - Irrigated
- Colby
 Dryland
- Hays
 Dryland

Forage Soybean (Glycine max)

BMR Forage Sorghum (Sorghum bicolor)

Pearl Millet (Pennisetum glaucum)

Sunnhemp (Crotalaria juncea)

Lablab (Lablab purpureus)

Materials and Methods

- In Garden City, each species harvested multiple times
- In Colby and Hays, crops were harvested at end of growing season
- Grasses Boot, Anthesis, Soft Dough, and Kernel Hard
- Forage Soybean and Cowpea Begin Flowering, Beginning • Pod Formation, Beginning Seed Fill, and Beginning Maturity
- Sunnhemp Beginning Flowering and End of Season (never • formed pods)
- Lablab End of Season (never entered reproductive stage) ٠

- At beginning of season soil water content was measured
- Soil water content was measured again at each harvest
- Harvest done by hand (could account for higher yields compared to machine harvest)

Areas of Analysis

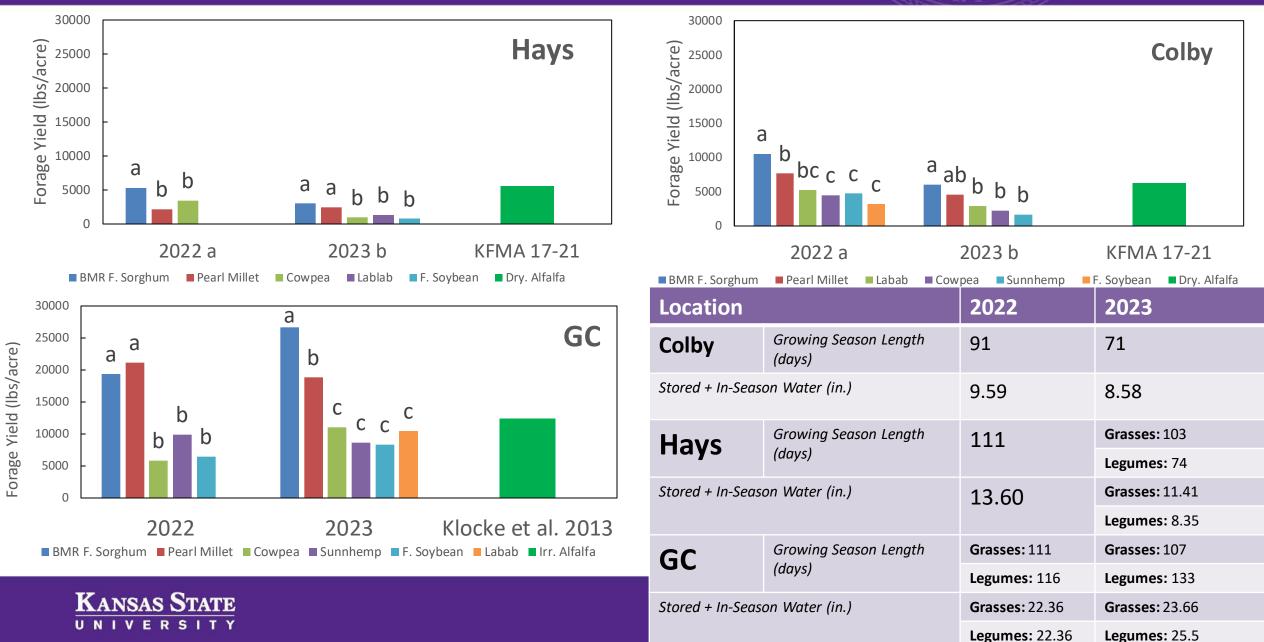
- Yield x Location
- Water Use x Location
- Water Use Efficiency (WUE) x Location
- Yield x Cutting Stage
- Water Use x Cutting Stage
- Water Use Efficiency (WUE) x Cutting Stage

Yield x Location

Type III Test of Fixed Effects for Yield Across All Locations		
Test of Fixed Effects	P>F	
Species	<.0001	
Year	0.1117	
Location	<.0001	
Species x Year	0.2467	
Species x Location	<.0001	
Year x Location	0.0007	

Type III Test of Fixed Effects for Yield Across Dryland

0.0002


Species x Year x Location

Locations		
Test of Fixed Effects	P>F	
Species	<.0001	
Year	<.0001	
Location	0.0011	
Species x Year	0.0621	
Species x Location	0.0007	
Year x Location	0.0037	
Species x Year x Location	0.0483	

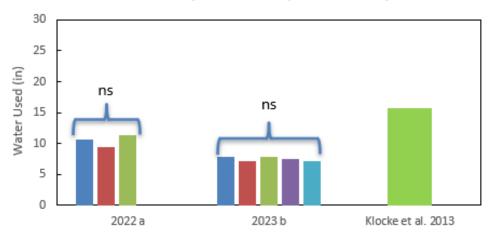
Type III Test of Fixed Effects for Yield in Garden City

/ /
P>F
<.0001
0.0781
0.0288

Yield x Location

Water Use x Location

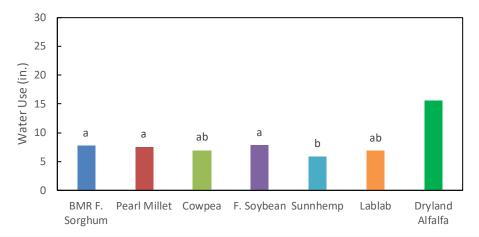
Type III Test of Fixed Effects for Water Use Across All Locations		
Test of Fixed Effects	P>F	
Species	0.0187	
Year	0.4949	
Location	<.0001	
Species x Year	0.0003	
Species x Location	0.0003	
Year x Location	0.0004	
Species x Year x Location	0.0004	

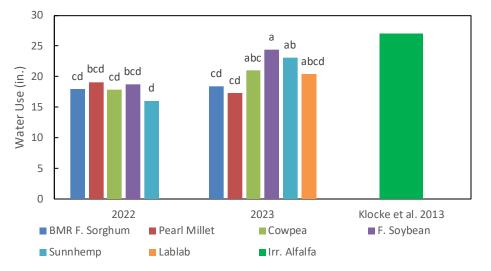

Type III Test of Fixed Effects for Water Use Across Dryland Locations

Test of Fixed Effects	P>F
Species	0.0034
Year	0.0006
Location	0.0151
Species x Year	0.6502
Species x Location	0.0435
Year x Location	0.6425
Species x Year x Location	0.6957

Type III Test of Fixed Effects for Water Use in Garden City

Test of Fixed Effects	P>F
Species	0.01
Year	0.0028
Species x Year	0.0004


End of Season Water Use x Location


Water Use by Year and Species in Hays

BMR F. Sorghum Pearl Millet Cowpea F. Soybean Lablab Dry. Alfalfa

Water Use by Species Across Years in Colby

Water Use by Year and Species in GC

Type III Test of Fixed Effects for Water Use at Hays and Colby

Test of Fixed Effects	P>	F
	Hays	Colby
Species	0.1725	0.0018
Year	0.0339	0.002
Species x Year	0.44	0.851

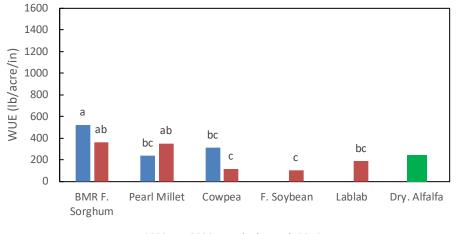
KANSAS STATE

KANSAS STATE

UNIVERSITY_®

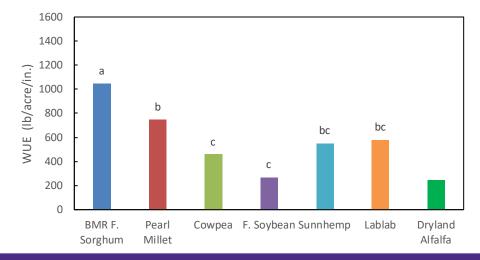
WUE x Location

Type III Test of Fixed Effects for WUE Across All Locations		
Test of Fixed Effects	P>F	
Species	<.0	0001
Year	0.0)282
Location	<.0	0001
Species x Year	0.1	.114
Species x Location	<.0	0001
Year x Location	0.0	085
Species x Year x Location	0.0	<mark>)061</mark>

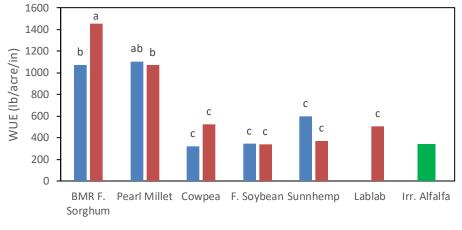

Type III Test of Fixed Effects for WUE Across Dryland Locations

Test of Fixed Effects	P>F
Species	<.0001
Year	0.0095
Location	<.0001
Species x Year	0.1310
Species x Location	0.0124
Year x Location	0.3096
Species x Year x Location	0.4360
	•

Type III Test of Fixed Effects for WUE in GC		
Test of Fixed Effects	P>F	
Species	<.0001	
Year	0.2373	
Species x Year	0.0061	


WUE x Location

WUE by Year and Species in Hays



■ 2022 ■ 2023 ■ Klocke et al. 2013

Water Use by Species Across Years in Colby

■ 2022 ■ 2023 ■ Klocke et al. 2013

Test of Fixed Effects	P>F	
	Hays	Colby
Species	0.0002	<.0001
Year	0.2149	0.0289
Species x Year	0.0018	0.5765

Type III Test of Fixed Effects for WUE at Hays and Colby

KANSAS STATE

Garden City

Cutting Stage Impact on Yield, Water Use, and WUE

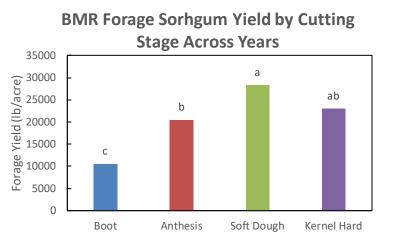
Type III Test of Fixed Effects for Yield Across All Cuttings		
Test of Fixed Effects	P>F	
Species	<.0001	
Year	0.0115	
Cut	<.0001	
Species x Year	0.0049	
Species x Cut	<.0001	
Year x Cut	0.251	
Species x Year x Cut	0.0053	

Type III Test of Fixed Effects for Water Use Across All Cuttings

P>F
<.0001
0.0002
<.0001
<.0001
<.0001
0.0003
0.0233

Type III Test of Fixed Effects	for WUE All Cuttings
Test of Fixed Effects	P>F
Species	<.0001
Year	0.6015
Cut	0.0001
Species x Year	0.0043
Species x Cut	<.0001
Year x Cut	0.0727
Species x Year x Cut	0.0012

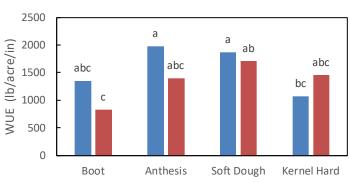
BMR Forage Sorghum


Type III Test of Fixed Effects for BMR FS Yield	
Test of Fixed Effects	P>F
Year	0.4048
Cut	<.0001
Year x Cut	0.1912

Ţ

Type III Test of Fixed Effects for BMR FS Water Use

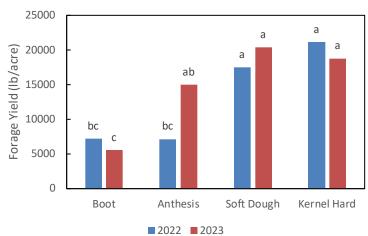
Test of Fixed Effects	P>F
Year	0.0159
Cut	<.0001
Year x Cut	0.0003


Type III Test of Fixed Effects for BMR FS WUE	
Test of Fixed Effects	P>F
Year	0.1818
Cut	0.0003
Year x Cut	0.0135

BMR Forage Sorghum Water Use by Cutting Stage

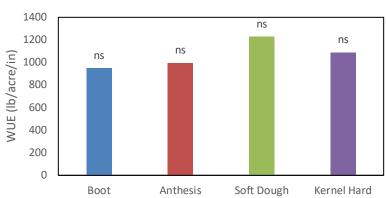
2022 2023

Stage	2022	2023
Planting	6/17	5/30
Boot	8/22	7/27
Anthesis	8/30	8/14
Soft Dough	9/26	8/29
Kernel Hard	10/6	9/14

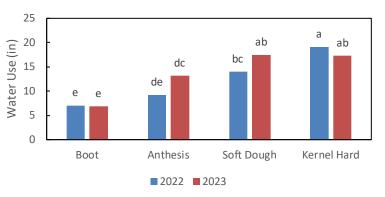


Pearl Millet

Type III Test of Fixed Effects for Pearl Millet Yield		
Test of Fixed Effects	P>F	
Year	0.2404	
Cut	<.0001	
Year x Cut	0.0446	

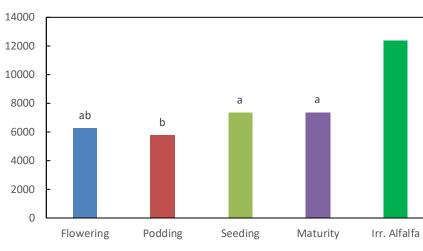

Type III Test of Fixed Effects for Pearl Millet Water Use		
Test of Fixed Effects	P>F	
Year	0.2766	
Cut	<.0001	
Year x Cut	<.0001	

Type III Test of Fixed Effects for Pearl Millet WUE		
Test of Fixed Effects	P>F	
Year	0.9616	
Cut	0.2775	
Year x Cut	0.2479	

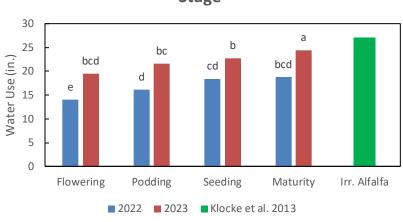

Pearl Millet Yield by Cutting Stage

Stage	2022	2023
Planting	6/17	5/30
Boot	8/8	7/20
Anthesis	8/15	8/9
Soft Dough	9/8	8/25
Kernel Hard	10/6	9/14

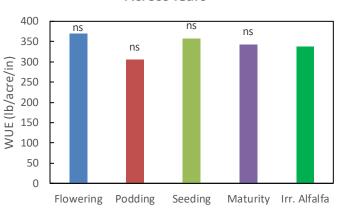
Pearl Millet Water Use by Cutting Stage


KANSAS STATE

Forage Soybean


Type III Test of Fixed Effects for F. Soybean Yield		
Test of Fixed Effects	P>F	icre)
Year	0.0024	(Ib/a
Cut	0.0261	Yield
Year x Cut	0.54	Y age
		For

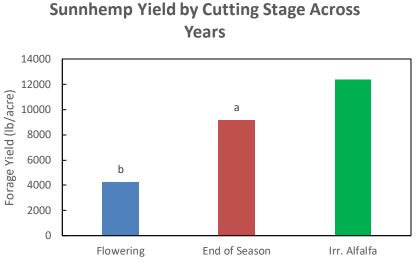
Type III Test of Fixed Effects for F. Soybean Water Use	
Test of Fixed Effects	P>F
Year	0.0049
Cut	<.0001
Year x Cut	0.0247


Type III Test of Fixed Effects for F. Soybean WUE		
Test of Fixed Effects	P>F	
Year	0.3585	
Cut	0.1463	
Year x Cut	0.4399	

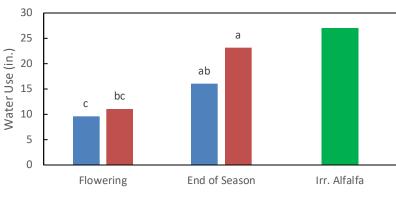
Forage Soybean Water Use by Cutting Stage

Forage Soybean WUE by Cutting Stage Across Years

Stage	2022	2023
Planting	6/17	5/30
Flowering	9/14	9/14
Podding	9/26	9/19
Seeding	10/6	9/27
Maturity	10/11	10/10


Forage Soybean Yield by Cutting Stage Across Years

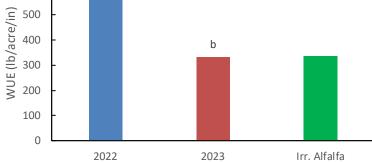
Ē Sunnhemp


Type III Test of Fixed Effects for Sunnhemp Yield		
Test of Fixed Effects	P>F	
Year	0.3166	
Cut	0.0014	
Year x Cut	0.4759	

Type III Test of Fixed Effects for Sunnhemp Water Use	
Test of Fixed Effects	P>F
Year	0.0712
Cut	<.0001
Year x Cut	0.0011

Type III Test of Fixed Effects for Sunnhemp Water Use	
Test of Fixed Effects	P>F
Year	0.0302
Cut	0.4027
Year x Cut	0.328

Sunnhemp Water Use by Cutting Stage

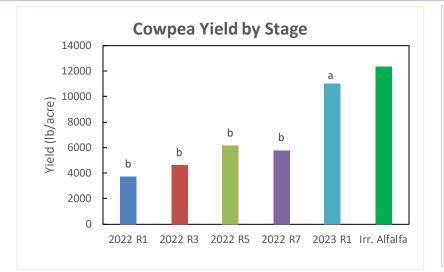

а b

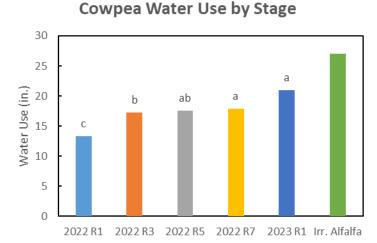
Sunnhemp WUE by Year Across Cutting

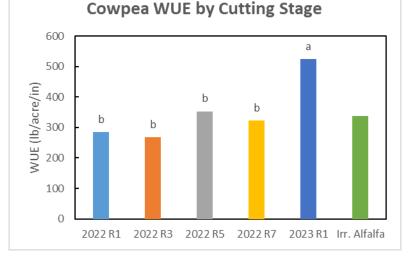
Stages

700

600




Stage	2022	2023
Planting	6/17	5/30
Flowering	8/30	7/27
End of Season	10/11	10/10


■ 2022 ■ 2023 ■ Klocke et al. 2013

Cowpea (Variety: Iron and Clay)

Stage	2022	2023
Planting	6/17	5/30
Flowering	9/14	10/4
Podding	10/6	
Seeding	10/11	
Maturity	10/14	

Cowpea on 10/13/22

 Cowpea did not reach reproductive stage in Colby or Hays either year

Cowpea on 10/4/23

 Did not progress past flowering before first freeze

KANSAS STATE

Forage Quality

Crude Protein (CP)

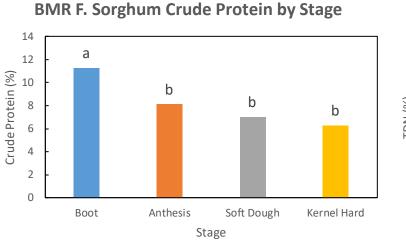
Total Digestible Nutrients (TDN)

Relative Feed Quality (RFQ)

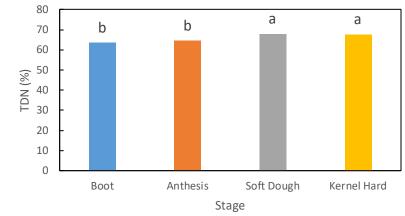
Type III Test of Fixed Effects for Crude Protein	
Test of Fixed Effects	P>F
Species	<.0001
Year	0.6856
Cut	<.0001
Species x Year	0.0001
Species x Cut	<.0001
Year x Cut	0.2406
Species x Year x Cut	0.0918

Type III Test of Fixed Effects for TDN

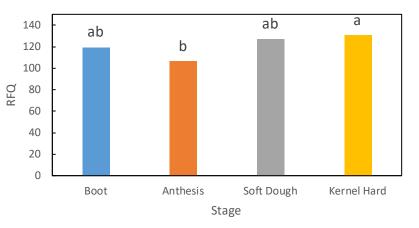
P>F
<.0001
0.8815
<.0001
<.0001
<.0001
0.0647
0.3471


Type III Test of Fixed Effects for RFQ	
Test of Fixed Effects	P>F
Species	<.0001
Year	0.5149
Cut	<.0001
Species x Year	0.0006
Species x Cut	0.0003
Year x Cut	0.6149
Species x Year x Cut	0.2222

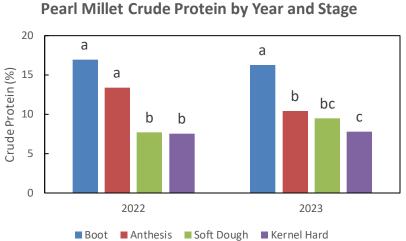
BMR Forage Sorghum


Type III Test of Fixed Effects for BMR FS Crude Protein		
Test of Fixed Effects	P>F	
Year	0.4355	
Cut	0.0008	
Year x Cut	0.2905	

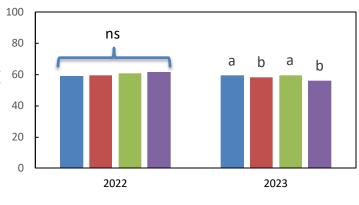
Type III Test of Fixed Effects for BMR FS TDN	
Test of Fixed Effects	P>F
Year	0.709
Cut	<.0001
Year x Cut	0.6292


Type III Test of Fix	ed Effects for BMR FS RFQ
Test of Fixed Effects	P>F
Year	0.819
Cut	0.0471
Year x Cut	0.5229

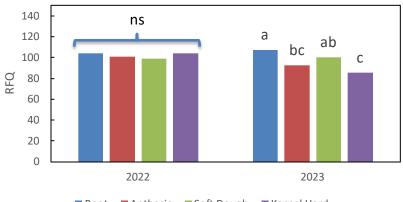
BMR F. Sorghum TDN by Stage



BMR F. Sorgum RFQ by Stage



Pearl Millet


Pearl Millet TDN by Year and Stage

■ Boot ■ Anthesis ■ Soft Dough ■ Kernel Hard

Pearl Millet RFQ by Year and Stage

TDN (%)

■ Boot ■ Anthesis ■ Soft Dough ■ Kernel Hard

Type III Test of Fixed Effects for Pearl Millet Crude Protein					
Test of Fixed Effects	P>F				
Year	0.5829				
Cut	<.0001				
Year x Cut	0.0132				

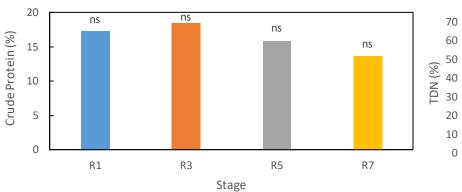
Type III Test of Fixed Effects for Pearl Millet TDN

Test of Fixed Effects	P>F
Year	0.0305
Cut	0.3284
Year x Cut	0.0301

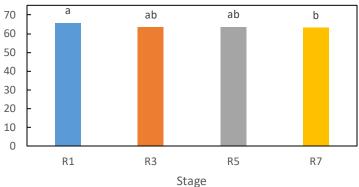
Type III Test of Fixed Effects for Pearl Millet RFQ

Test of Fixed Effects	P>F
Year	0.0992
Cut	0.0522
Year x Cut	0.0395

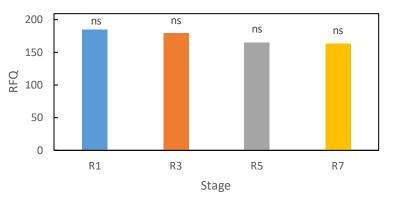
K	A	N	IS	A	5	S	[]	I	Е
U	N		۷	Ε	R	S	Ũ	Т	Y


Forage Soybean

Type III Test of Fixed Effects for F. Soybean Crude Protein					
Test of Fixed Effects	P>F				
Year	0.9839				
Cut	0.0626				
Year x Cut	0.3013				


Type III Test of Fixed Effects for F. Soybean TDN					
Test of Fixed Effects	P>F				
Year	0.7846				
Cut	0.0308				
Year x Cut	0.1203				

Type III Test of Fixe	d Effects for F. Soybean RFQ
Test of Fixed Effects	P>F
Year	0.5298
Cut	0.1383
Year x Cut	0.1899


F. Soybean Crude Protein by Stage Across Year

F. Soybean TDN by Stage Across Year

F. Soybean RFQ by Stage Across Years

Sunnhemp

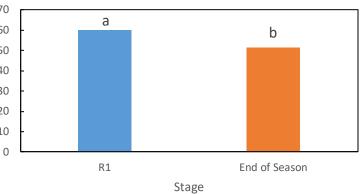
Year

Cut

Year x Cut

Type III Test of Fixed Effects for Sunnhemp Crude Protein		Su	unnhemp Crude P		Sunnho	e	
Test of Fixed Effects	P>F	25	2		70		—
Year	0.0079	<u></u> 20	d		60		
Cut	0.0002) 			50 ⁽ ×) 40	-	
Year x Cut	0.0541	Prot		b	°) 40 NG 30	- -	
		rude			₽ ⁰⁰ 20	r I	
Type III Test of Fixed Effects for Sunnhemp TDN		Ū5-			10	r l	
Test of Fixed Effects	P>F	0			ا ₀ ا		

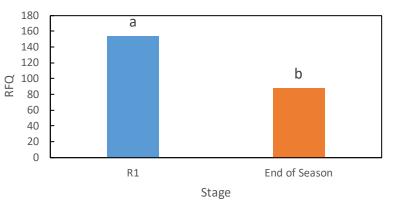
0.0129


0.0010

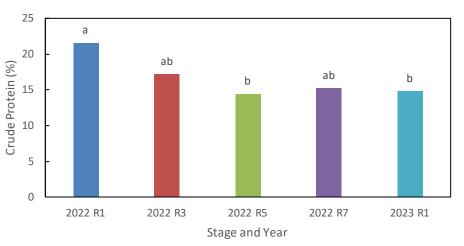
0.992

R1

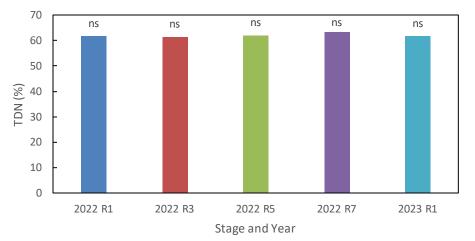
Stage


Sunnhemp TDN by Stage Across Years

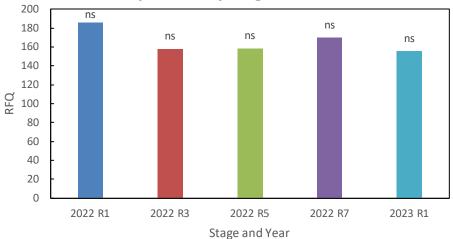
Type III Test of Fixed Effects for Sunnhemp RFQTest of Fixed EffectsP>FYear0.0149Cut0.0022Year x Cut0.2385



End of Season

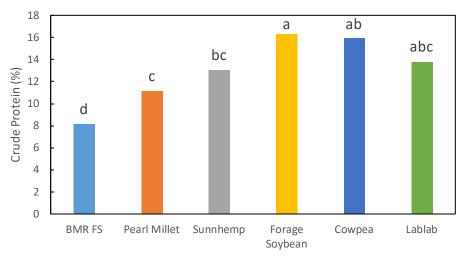


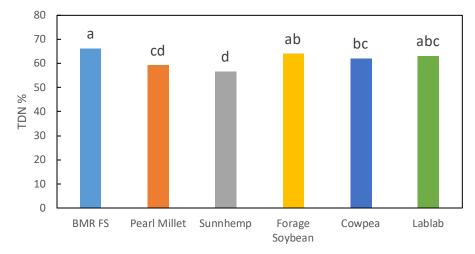
Cowpea



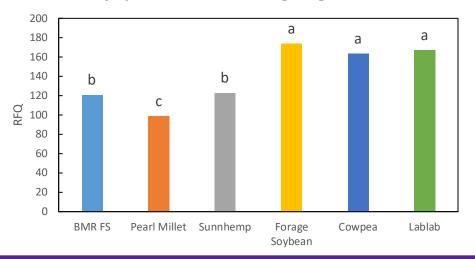
Cowpea Crude Protein by Stage and Year

Cowpea TDN by Stage and Year


Cowpea RFQ by Stage and Year



Comparing Average Quality Measures By Species


Crude Protein Content by Species Across Cutting Stage and Year

TDN by Species Across Cutting Stage and Year

RFQ by Species Across Cutting Stage and Year

Conclusions (Yield and Water)

- Lablab and Cowpea were the only two legumes that established at every site when planted
- They were comparable to Alfalfa in terms of yield, water use, and WUE in both dryland and irrigated environments
- Weed pressure, herbicide limitations, seed quality/cultivar consistency, best management practices, and wildlife feeding are all concerns with summer annual legumes
- Yield and water use generally increase with maturity, but relationship between cutting stage and WUE is species dependent

Conclusions (Quality)

- Legumes were higher in CP and RFQ than Grasses
- Forage quality of BMR Forage Sorghum, Pearl Millet and Sunnhemp were more influenced by cutting stage than Forage Soybean or Cowpea
- Forage Soybean, Cowpea, and Lablab were not significantly different from each other regarding CP, TDN, and RFQ
- In all species, other than forage soybean, CP significantly decreased as maturity increased.

Further Research/Analysis

- Identify cutting stages that optimize quality and yield by using milk per acre and crude protein per acre
- Direct comparison between alfalfa and cowpea or lablab under low irrigation and dryland
- Compare economic return of annual legumes, grass, and alfalfa
- Further investigation into planting date and cutting time and regrowth is needed

Questions and Acknowledgements

Questions?

Acknowledgements

- Dr. Augustine Obour
- Dr. Lucas Haag
- Dr. Kraig Roozeboom
- Tom Roberts
- Joe Kimzey
- Logan Simon
- Mikaela Lawrence
- Zach Carson
- Perpetual Tamea

References: Klocke, N. L., Currie, R. S., & Holman, J. D. (2013). Alfalfa response to irrigation from limited water supplies. Transactions of the ASABE, 56(5), 1759-1768.

