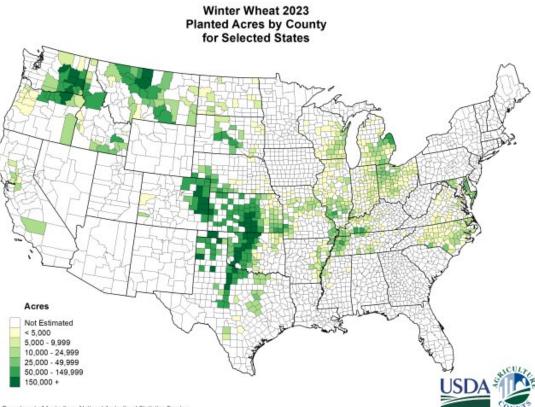
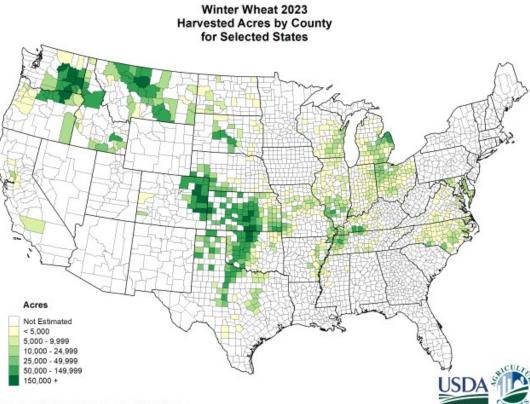


#### TEXAS A&M AGRILIFE

### Wheat and Triticale Forage Research





Dr. Jackie Rudd, Jason Baker, Shannon Baker Bushland, TX



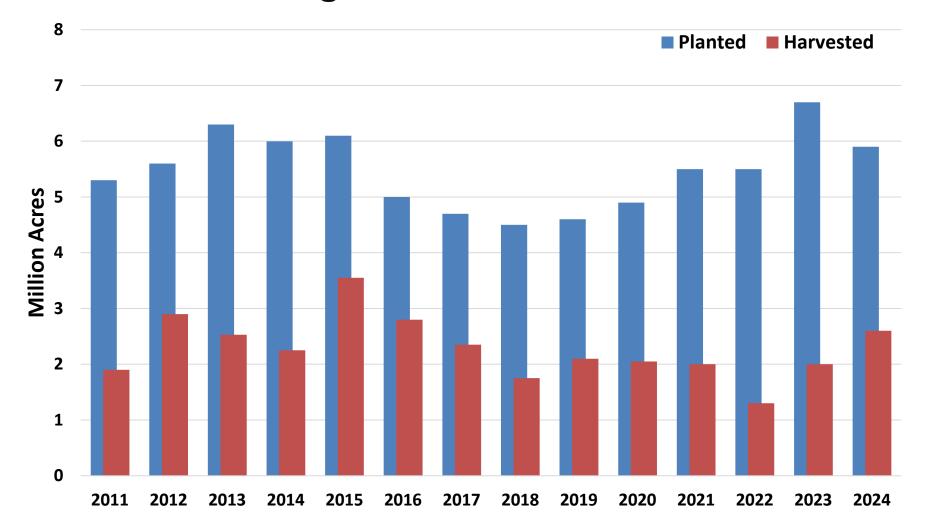
Agriculture and Food Research Initiative Competitive Grant 2022-68013-36439

### **US Winter Wheat Production**



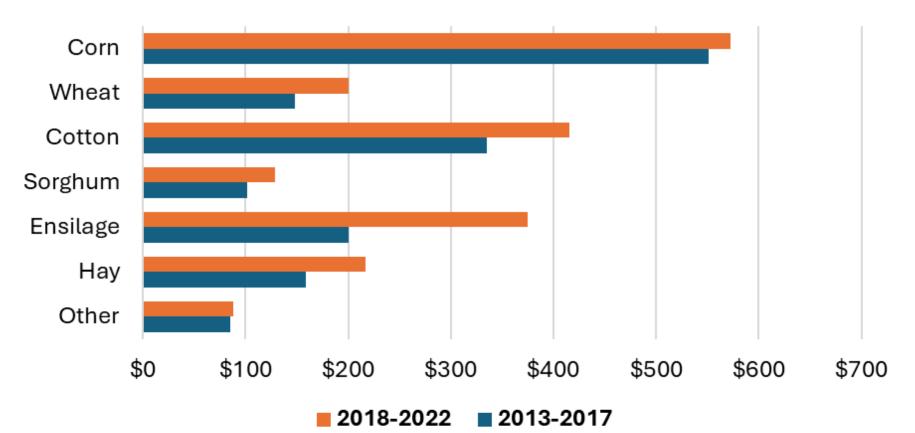


U.S. Department of Agriculture, National Agricultural Statistics Service




U.S. Department of Agriculture, National Agricultural Statistics Service

### **Texas Wheat Acres**


Ē

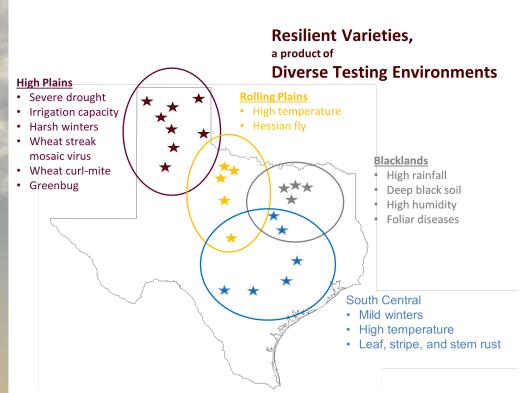
### **USDA National Agricultural Statistics Service**



#### Figure 8. Cash Receipts by Crop Category, 2018-2022 versus 2013-2017

(Million Dollars)








### What drives breeding objectives?

### **Grain and Grazing**

- Yield and Quality
- Weather stress "climate resilient"
- Pests
  - Wheat curl mite, greenbug, RWA
  - Are we importing pests with feedstocks?
  - WSMV, Yr, Sr
- Forage Yield
  - Regrowth
  - Standability
  - High biomass from rye translocation
    - A. tauschii introgressed 20 years ago
- Nutrient deficiency
- ↑ management flexibility
- Stabilize economic income



### **Texas Wheat Variety Survey**

| Top to function   |                  |      | una - |      |
|-------------------|------------------|------|-------|------|
| Variety           | Percent of Acres |      | Rank  |      |
| variety           | 2023             | 2024 | 2023  | 2024 |
| TAM 114           | 5.5              | 6.5  | 1     | 1    |
| TAM 204           | 3.4              | 4.0  | 3     | 2    |
| TAM 111           | 3.3              | 3.9  | 4     | 3    |
| TAM 115           | 1.3              | 2.4  | 10    | 4    |
| TAM 205           | 0.2              | 1.9  | 29    | 5    |
| TAM W-101/TAM 101 | 0.7              | 1.9  | 15    | 5    |
| Smith's Gold      | 3.6              | 1.9  | 2     | 5    |
| TAM 112           | 2.0              | 1.7  | 6     | 8    |
| Winterhawk        | 1.2              | 1.2  | 11    | 9    |
| WB 4515           | 0.6              | 1.0  | 16    | 10   |

#### Top 10 Varieties Planted in 2023 and 2024 <sup>1</sup>

1. 2023 state wheat planted estimate of 6.40 million acres, and 2024 preliminary estimate of 5.90 million acres

https://www.nass.usda.gov/Statistics\_by\_State/Texas/Publications/More\_Features/tx-wheat-variety-2024.pdf

**TAM 114**, 2014, excellent milling and baking, all rusts. **Current #1 in Texas.** We have an awnless

**TAM 204**, 2014, Beardless, *Gb3*, *Cmc4*, *HF*, *WSMV*, soil borne, acid soil. **Current #1 grazing wheat.** 

**TAM 115**, 2019, high yield, excellent milling and baking, all rusts, *drought, WSMV, 1A1R, Gb3, Cmc4*.

**TAM 205**, 2019, high yield, excellent milling and baking, all rusts, WSMV (*Wsm2*), *Fhb1* 

TAM 116, 2023, HP Intensive management, all rusts.
TX14V70214, 2023, Statewide, awnless, APR to all rusts.
TX18A1119, 2024, HP to Blacklands, yield, TW, milling, all rusts.







12 to 15 YEARS

Identify donor parents with desired characteristics

Generate genetic variability through sexual hybridization

Self pollinate for 3-4 generations while performing selection among and within populations

Conduct multi-location yield trials to identify candidate varieties

|    | Trial Location and Name                    | Generation       | Entries | Reps | Locs |
|----|--------------------------------------------|------------------|---------|------|------|
| 1  | Greenhouse Crossing Block                  |                  | 500     |      |      |
| 2  | Greenhouse rows                            | $F_1$            | 300     |      |      |
| 3  | Field plots                                | F <sub>2</sub>   | 300     | 1    | 2    |
| 4  | Field plots                                | F <sub>3</sub>   | 500     | 1    | 2    |
| 5  | Field plots                                | F <sub>4</sub>   | 450     | 1    | 2    |
| 6  | Head-rows                                  | F <sub>4:5</sub> | 20,000  | 1    | 2    |
| 7  | Preliminary Observation Yield Trials       | F <sub>4:6</sub> | 600     | 1    | 3    |
| 8  | Year 1: Advanced yield trials              | Advanced         | 200     | 2    | 5    |
| 9  | Year 2: Advanced yield trials              | Advanced         | 120     | 2    | 7    |
| 10 | Texas Elite (TXE)                          |                  | 40      | 3    | 18   |
| 11 | Regional Nursery (SRPN), TXE, and increase |                  | 50      | 3    | 42   |
| 12 | SRPN, TXE, Variety Trial (UVT)             |                  | 40      | 3    | 65   |
| 13 | Release                                    |                  | 1       |      |      |

### **GENOMIC SELECTION**

Generate genetic variability through sexual hybridization

Self pollinate for 3-4 generations while performing selection among and within populations

Conduct multi-location yield trials to identify candidate varieties

|    | Trial Location and Name                    | Generation       | Entries | Reps | Locs |
|----|--------------------------------------------|------------------|---------|------|------|
| 1  | Greenhouse Crossing Block                  |                  | 500     |      |      |
| 2  | Greenhouse rows                            | F <sub>1</sub>   | 300     |      |      |
| 3  | Field plots SPEED BR                       | REEDING          | 300     | 1    | 2    |
| 4  | Field plots                                | F <sub>3</sub>   | 500     | 1    | 2    |
| 5  | Field plots                                | F <sub>4</sub>   | 450     | 1    | 2    |
| 6  | Head-rows                                  | F <sub>4:5</sub> | 20,000  | 1    | 2    |
| 7  | Preliminary Observation Yield Trials       | F <sub>4:6</sub> | 600     | 1    | 3    |
| 8  | Year 1: Advanced yield trials              | Advanced         | 200     | 2    | 5    |
| 9  | Year 2: Advanced yield trials              | Advanced         | 120     | 2    | 7    |
| 10 | Texas Elite (TXE)                          |                  | 40      | 3    | 18   |
| 11 | Regional Nursery (SRPN), TXE, and increase |                  | 50      | 3    | 42   |
| 12 | SRPN, TXE, Variety Trial (UVT)             |                  | 40      | 3    | 65   |
| 13 | Release                                    | 1                |         |      |      |

Identify donor parents with desired characteristics

Generate genetic variability through sexual hybridization

Self pollinate for 3-4 generations while performing selection among and within populations

Conduct multi-location yield trials to identify candidate varieties

|    | Trial Location and Name                    | Generation       | Entries | Reps | Locs |
|----|--------------------------------------------|------------------|---------|------|------|
| 1  | Greenhouse Crossing Block                  |                  | 500     |      |      |
| 2  | Greenhouse rows                            | F <sub>1</sub>   | 300     |      |      |
| 3  | Field plots                                | F <sub>2</sub>   | 300     | 1    | 2    |
| 4  | Field plots                                | F <sub>3</sub>   | 500     | 1    | 2    |
| 5  | Field plots F <sub>4</sub>                 |                  | 450     | 1    | 2    |
| 6  | Head-rows                                  | F <sub>4:5</sub> | 20,000  | 1    | 2    |
| 7  | Preliminary Observation Yield Trials       | F <sub>4:6</sub> | 600     | 1    | 3    |
| 8  | Year 1: Advanced yield trials              | Advanced         | 200     | 2    | 5    |
| 9  | Year 2: Advanced yield trials              | Advanced         | 120     | 2    | 7    |
| 10 | Texas Elite (TXE)                          |                  | 40      | 3    | 18   |
| 11 | Regional Nursery (SRPN), TXE, and increase |                  | 50      | 3    | 42   |
| 12 | SRPN, TXE, Variety Trial (UVT)             | 40               | 3       | 65   |      |
| 13 | Release                                    | 1                |         |      |      |

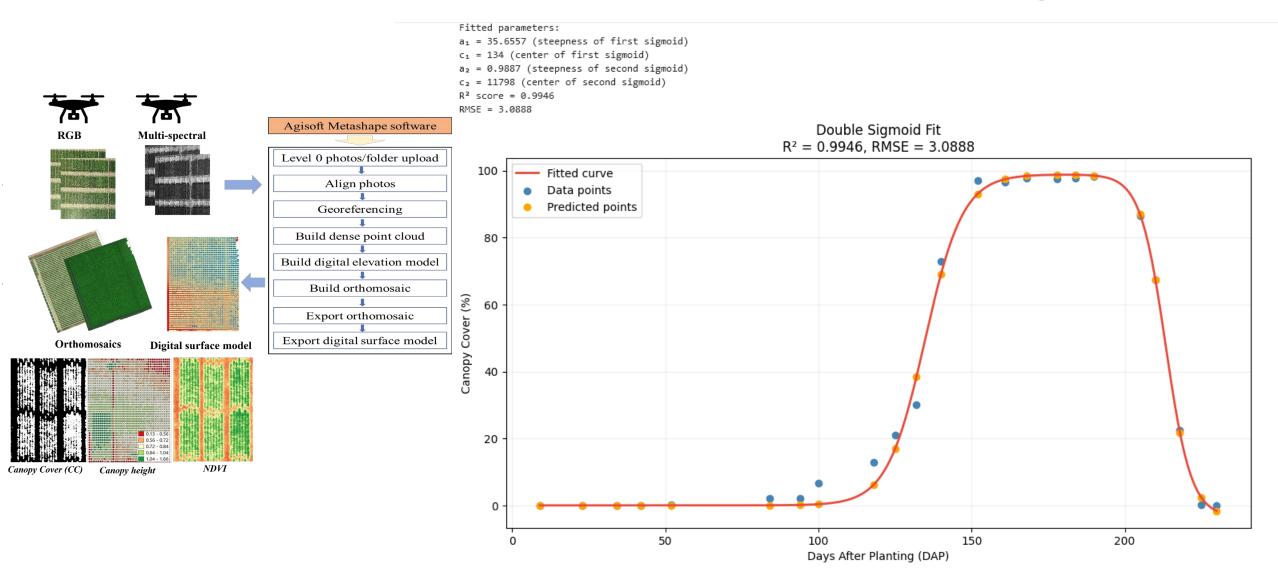
Identify donor parents with desired characteristics

Generate genetic variability through sexual hybridization

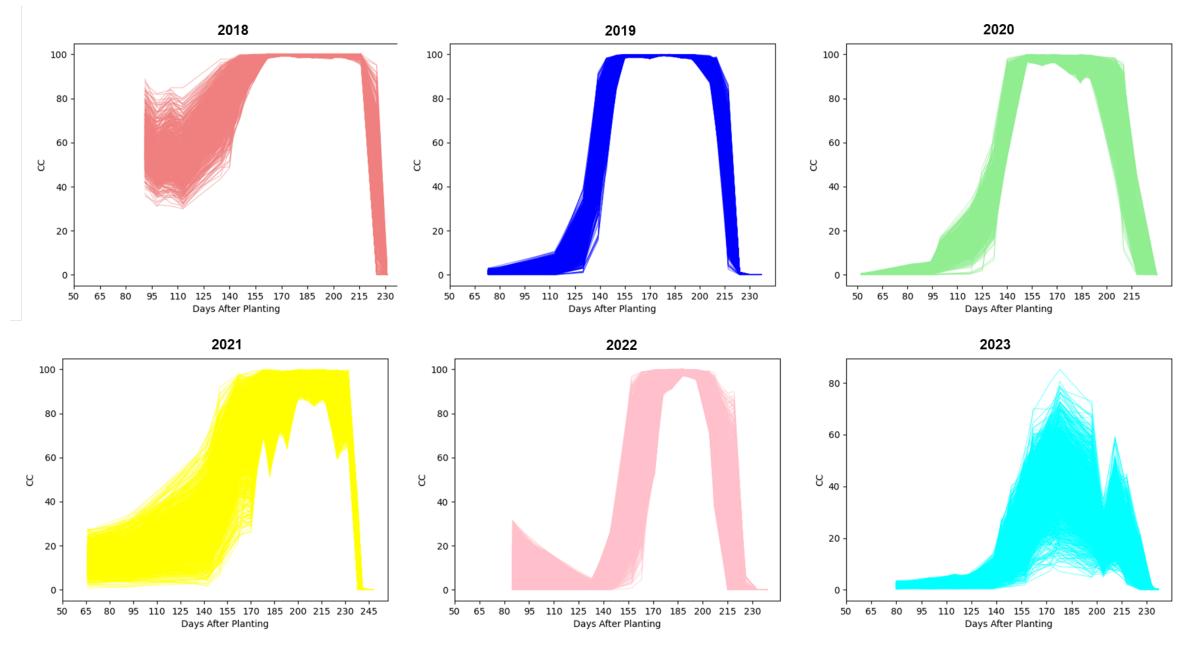
#### DOUBLED HAPLOID

Conduct multi-location yield trials to identify candidate varieties

|    | Trial Location and Name                    | Generation       | Entries | Reps | Locs |
|----|--------------------------------------------|------------------|---------|------|------|
| 1  | Greenhouse Crossing Block                  |                  | 500     |      |      |
| 2  | Greenhouse rows                            | F <sub>1</sub>   | 300     |      |      |
| 3  | Field plots                                | F <sub>2</sub>   | 300     | 1    | 2    |
| 4  | Field plots                                | F <sub>3</sub>   | 500     | 1    | 2    |
| 5  | Field plots                                | F <sub>4</sub>   | 450     | 1    | 2    |
| 6  | Head-rows                                  | F <sub>4:5</sub> | 20,000  | 1    | 2    |
| 7  | Preliminary Observation Yield Trials       | F <sub>4:6</sub> | 600     | 1    | 3    |
| 8  | Year 1: Advanced yield trials              | Advanced         | 200     | 2    | 5    |
| 9  | Year 2: Advanced yield trials              | Advanced         | 120     | 2    | 7    |
| 10 | Texas Elite (TXE)                          |                  | 40      | 3    | 18   |
| 11 | Regional Nursery (SRPN), TXE, and increase |                  | 50      | 3    | 42   |
| 12 | SRPN, TXE, Variety Trial (UVT)             |                  | 40      | 3    | 65   |
| 13 | Release                                    | 1                |         |      |      |
|    |                                            |                  |         |      |      |


Identify donor parents with desired characteristics

Generate genetic variability through sexual hybridization


Self pollinate for 3-4 generations while performing selection among and within populations

### GENOMIC AND PHENOMIC PREDICTION

### **New Tools: UAS Data-Informed Insights**



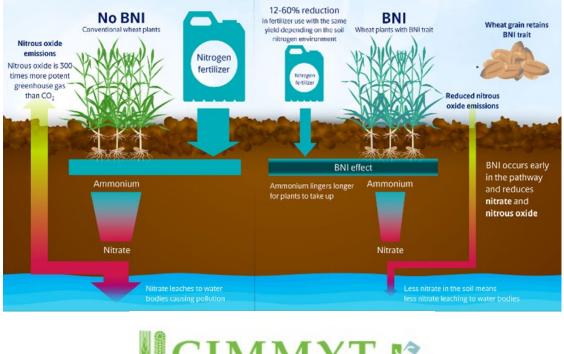
### **Bushland Irrigated Canopy Cover**



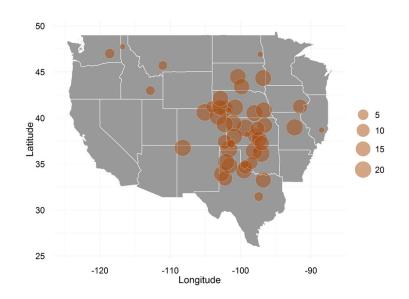
## Disease Monitori Chilicothe, TX April, 2024

"Who cares about variety selection?"

### **New Traits**


#### **Biological Nitrification Inhibition (BNI)**

JIRCAS and CIMMYT \$Novo Nordisk\$ Came from *Leymus racemosus* Optimize yields while  $\uparrow$ NUE Stop the nitrogen cascade  $\downarrow N_2O$  emissions through root exudates


#### **High Fiber for Human Nutrition**

Arabinoxylan: non-starch polysaccharide ↑Fiber in diet ↓chronic diseases

Continued work on Yr, WSMV/WCM Gene stewardship All releases have bread quality Can release silage-specific varieties Accelerating awnless lines to release



### CIMMYT 🦻



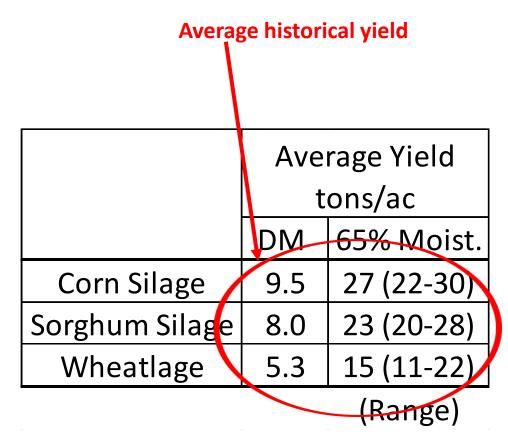
### **Technology Transfer**




### **Bushland Forage Trial**

2023

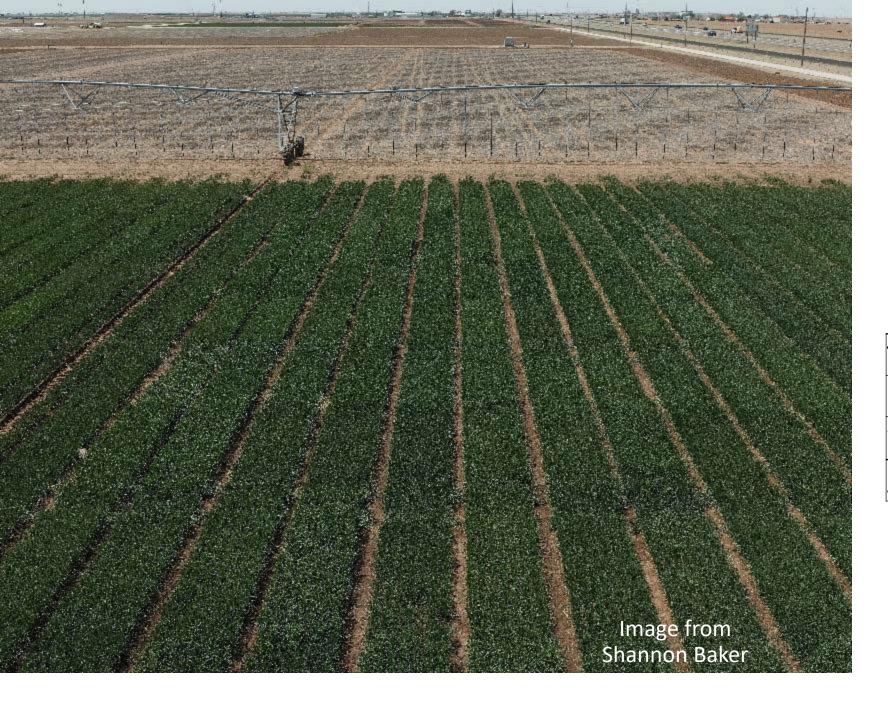
|      |                  |           |                        | I             | Dry Matter    | Yield (lb/a   | )            |
|------|------------------|-----------|------------------------|---------------|---------------|---------------|--------------|
|      |                  |           |                        | <u>4-Year</u> | <u>3-Year</u> | <u>2-Year</u> | <u>2023</u>  |
| Rank | Variety          | Species   | Source                 | AVG           | AVG           | AVG           | Total        |
| 1    | TX14VT70526      | Triticale | TAMU                   | 6825          | 7224          | 6234          | 9733         |
| 2    | TX16VT68295      | Triticale | TAMU                   | 6252          | 6436          | 5843          | 8358         |
| 3    | Dyna-Gro 7322    | HRW*      | Nutrien                | 5328          | 5460          | 5672          | 8818         |
| 4    | Trical Gunner    | Triticale | Trical Superior Forage |               | 5929          | 5643          | 8564         |
| 5    | TAM 114          | HRW       | Adaptive Genetics      |               |               | 6496          | 10350        |
| 6    | TX20AT2015       | Triticale | TAMU                   |               |               | 6112          | 10262        |
| 7    | TX20AT2018       | Triticale | TAMU                   |               |               | 5295          | 8809         |
| 8    | Trical 20T06     | Triticale | Trical Superior Forage |               |               | 5271          | 8238         |
| 9    | Trical EXP 220   | Triticale | Trical                 |               |               |               | 11986        |
| 10   | Trical EXP 209   | Triticale | Trical                 |               |               |               | 10037        |
| 11   | Trical Flex 719  | Triticale | Trical Superior Forage |               |               |               | 9865         |
| 12   | TX20AT2014       | Triticale | TAMU                   |               |               |               | 9751         |
| 13   | TX20AT2005       | Triticale | TAMU                   |               |               |               | 9608         |
| 14   | Trical EXP 305   | Triticale | Trical Superior Forage |               |               |               | 9575         |
| 15   | <b>WB</b> 4422   | HRW       | Westbred               |               |               |               | 9564         |
| 16   | WB4792           | HRW       | Westbred               |               |               |               | 9392         |
| 17   | TAM 205          | HRW       | Adaptive Genetics      |               |               |               | <b>93</b> 28 |
| 18   | Trical EXP 22W01 | HRW       | Trical Superior Forage |               |               |               | 9008         |
| 19   | Trical 22T01     | Triticale | Trical Superior Forage |               |               |               | 7555         |
| 20   | APB717003        | HRS       | Arizona Plant Breeders |               |               |               | 4592         |
| 21   | APB717019        | HRS       | Arizona Plant Breeders |               |               |               | 4015         |
| 22   | APB470308        | HRS       | Arizona Plant Breeders |               |               |               | 3636         |
| 23   | APB470298        | HRS       | Arizona Plant Breeders |               |               |               | 3302         |
|      | LSD (0.05)       |           |                        | 794           | 973           | NS            | 1398         |
|      | CV(%)            |           |                        | 14            | 14            | 13            | 12           |
|      | Mean             |           |                        | 6135          | 6262          | 5821          | 8450         |


<sup>†</sup>Varieties ranked according to 4-year, 3-year, 2-year, then 2023 total yield.

\*Awnless/Beardless



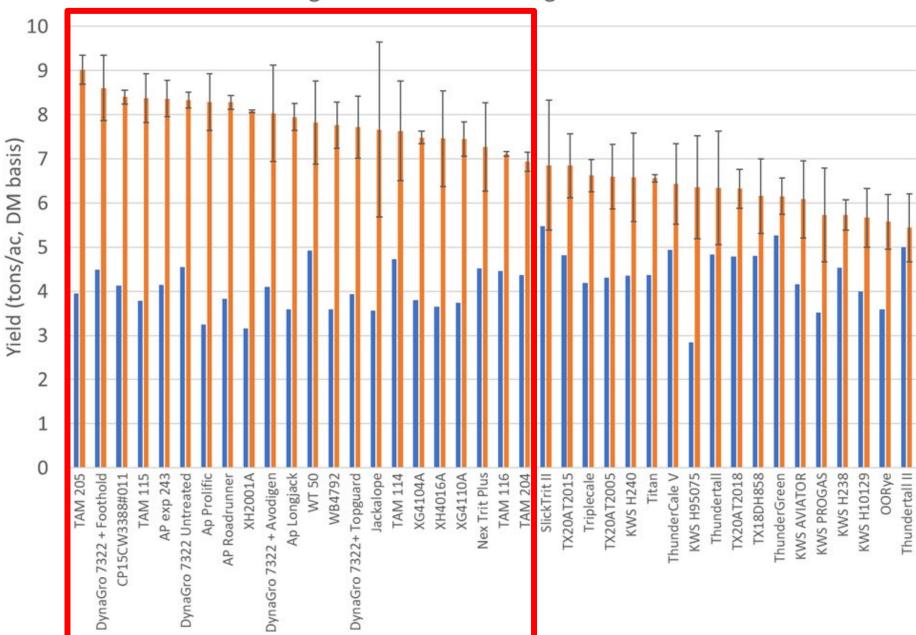
### Wheatlage and the "Forage Gap"


- <u>**Planned**</u> no longer an "opportunity crop"
- Insufficient summer silage produced to meet regional livestock needs Wheatlage: lower yielding than summer silages but a high-quality option
- Forages provide farmers an alternative market
- Forages generally use less water than grain crop because of earlier harvest stage – **opportunity for farmers with low well capacities**



\*Average Yields for the Texas High Plains Production Region

### **Boot Harvest Stage - Green Chop**

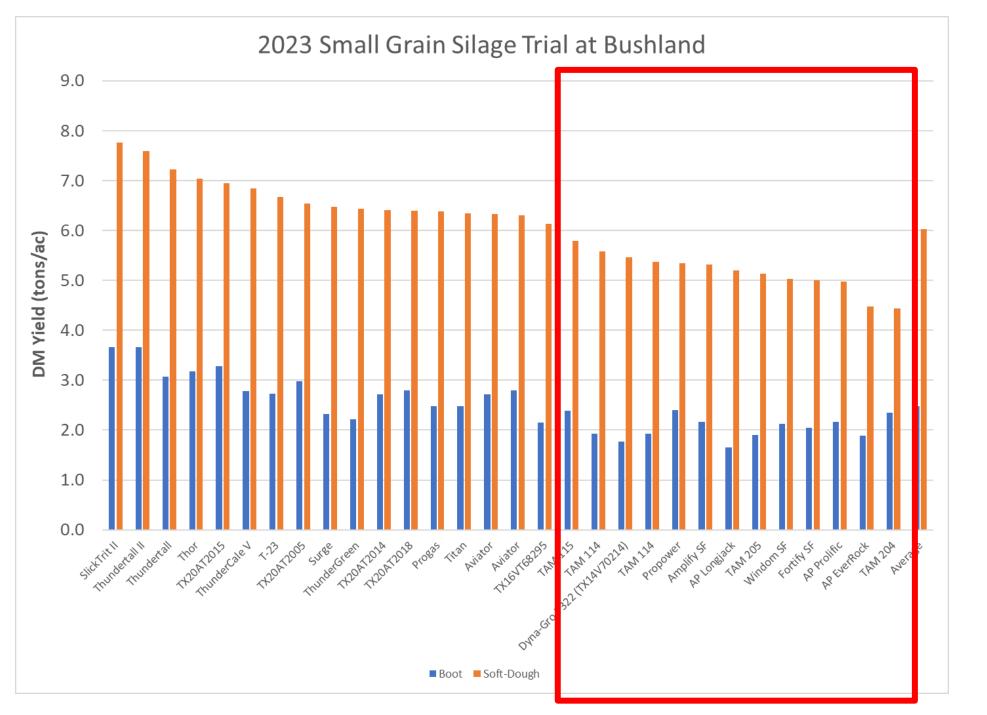

Directly fed or wilted prior to ensiling Optimize forage quality Less yield but less water



### 2022-2023 Small Grain Silage Trial at Bushland

Soft-

|           | Boot | Dough |
|-----------|------|-------|
| Triticale | 2.9  | 6.8   |
| Rye       | 2.5  | 6.1   |
| Wheat     | 2.1  | 5.1   |
| Average   | 2.5  | 6.0   |




#### 2023-2024 AgriLife Small Grain Silage Trial - Bushland



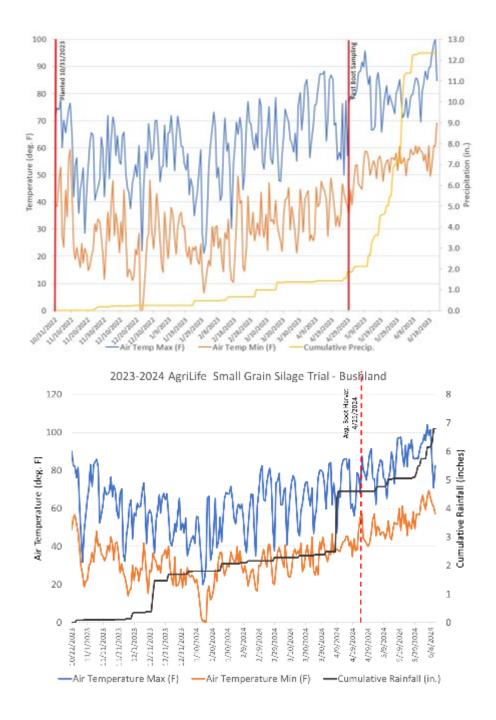


Soft Dough – Wheatlage





**Boot – Green Chop** 




Soft Dough – Wheatlage

# Forage Type Yield Response

Triticale – later maturity offers yield advantage IF growing late May weather is favorable

2023 70-85 °F after heading and rain 2024 90-100°F after heading and rain too late Wheat – earlier maturing 2023 80-90 °F after heading and dry 2024 80-90 °F after heading with rain and irrigation Need water (irrigation and/or precip) to overcome heat







Excellent forage yield
 Good for early planting
 High tonnage for silage and hay